|
Home
|
E-Submission/Review
|
Sitemap
|
Editorial Office
|
목적 및 범위
Aims and Scope
저널 정보
About the Journal
편집위원회
Editorial Board
Open Access
편집국
Editorial Office
논문투고안내
Instructions for Authors
연구윤리규정
Research and Publication Ethics
필수 점검 사항
Checklist
논문투고사이트
E-Submission
저작권이양동의서
Copyright Transfer Agreement
발간호 검색
All issues
출판전 논문
Online First
현재 발행 호
Current Issue
많이 읽힌 논문
Most Read Articles
많이 인용된 논문
Most Cited Articles
개별 논문 검색
Korean J. Met. Mater.
Search
저자 색인
Author Index
Korean Journal of Metals and Materials
Search
> Browse Articles > Search
D
i
a
g
n
o
s
i
s
o
f
M
e
c
h
a
n
o
l
u
m
i
n
e
s
c
e
n
t
C
r
a
c
k
B
a
s
e
d
o
n
D
o
u
b
l
e
D
e
e
p
L
e
a
r
n
i
n
g
i
n
A
l
7
0
7
5
이중 인공지능을 이용한 Al 7075 합금에서의 압광 균열 진단 연구
T
a
e
O
P
a
r
k
,
Y
o
u
n
W
o
o
S
h
i
n
,
S
e
u
n
g
H
w
a
n
L
e
e
,
P
i
u
s
J
w
a
,
Y
o
n
g
N
a
m
K
w
o
n
,
S
u
m
a
n
T
i
m
i
l
s
i
n
a
,
S
e
o
n
g
M
i
n
J
a
n
g
,
C
h
u
l
W
o
o
J
o
,
J
i
S
i
k
K
i
m
박태오, 신윤우, 이승환, 좌비오, 권용남, Suman Timilsina, 장성민, 조철우, 김지식
Korean J. Met. Mater.
2023;61(12):958-964. Published online 2023 Nov 30
DOI:
https://doi.org/10.3365/KJMM.2023.61.12.958
Abstract
The phenomenon of mechanoluminescence (ML) refers to the emission of light induced by mechanical stimulation applied to mechano-optical materials for example SrAl
2
O
3
:Eu,Dy (SAO). Numerous technologies on the basis of ML have been presented to visualize the stress or strain in various structures for the applications including structural health monitoring. As.....
More
G
e
n
e
r
a
t
i
n
g
t
h
e
M
i
c
r
o
s
t
r
u
c
t
u
r
e
o
f
A
l
-
S
i
C
a
s
t
A
l
l
o
y
s
U
s
i
n
g
M
a
c
h
i
n
e
L
e
a
r
n
i
n
g
기계학습에 의한 Al-Si 주조 합금 미세조직 이미지 생성
I
n
-
K
y
u
H
w
a
n
g
,
H
y
u
n
-
J
i
L
e
e
,
S
a
n
g
-
J
u
n
J
e
o
n
g
,
I
n
-
S
u
n
g
C
h
o
,
H
e
e
-
S
o
o
K
i
m
황인규, 이현지, 정상준, 조인성, 김희수
Korean J. Met. Mater.
2021;59(11):838-847. Published online 2021 Oct 28
DOI:
https://doi.org/10.3365/KJMM.2021.59.11.838
Abstract
In this study, we constructed a deep convolutional generative adversarial network (DCGAN) to generate the microstructural images that imitate the real microstructures of binary Al-Si cast alloys. We prepared four combinations of alloys, Al-6wt%Si, Al-9wt%Si, Al-12wt%Si and Al-15wt%Si for machine learning. DCGAN is composed of a generator and a discriminator......
More
Web of Science 3
Crossref 3
1
|
Journal Impact Factor 1.1