|
Home
|
E-Submission/Review
|
Sitemap
|
Editorial Office
|
목적 및 범위
Aims and Scope
저널 정보
About the Journal
편집위원회
Editorial Board
Open Access
편집국
Editorial Office
논문투고안내
Instructions for Authors
연구윤리규정
Research and Publication Ethics
필수 점검 사항
Checklist
논문투고사이트
E-Submission
저작권이양동의서
Copyright Transfer Agreement
발간호 검색
All issues
출판전 논문
Online First
현재 발행 호
Current Issue
많이 읽힌 논문
Most Read Articles
많이 인용된 논문
Most Cited Articles
개별 논문 검색
Korean J. Met. Mater.
Search
저자 색인
Author Index
Korean Journal of Metals and Materials
Search
> Browse Articles > Search
P
r
e
d
i
c
t
i
n
g
t
h
e
H
a
r
d
n
e
s
s
o
f
A
l
-
S
c
-
X
A
l
l
o
y
s
w
i
t
h
M
a
c
h
i
n
e
L
e
a
r
n
i
n
g
M
o
d
e
l
s
,
E
x
p
l
a
i
n
a
b
l
e
A
r
t
i
f
i
c
i
a
l
I
n
t
e
l
l
i
g
e
n
c
e
A
n
a
l
y
s
i
s
a
n
d
I
n
v
e
r
s
e
D
e
s
i
g
n
설명 가능한 인공지능으로 해석한 Al-Sc-X 합금의 경도 예측 기계학습 모델과 역설계
J
i
w
o
n
P
a
r
k
,
S
u
-
H
y
e
o
n
K
i
m
,
J
i
s
u
K
i
m
,
B
y
u
n
g
-
j
o
o
K
i
m
,
H
y
u
n
-
s
e
o
k
C
h
e
o
n
,
C
h
a
n
g
-
S
e
o
k
O
h
박지원, 김수현, 김지수, 김병주, 천현석, 오창석
Korean J. Met. Mater.
2023;61(11):874-882. Published online 2023 Oct 29
DOI:
https://doi.org/10.3365/KJMM.2023.61.11.874
Abstract
In this study, the Vickers hardness of precipitation-strengthened Al-Sc-X (X = Zr, Si, and Fe) alloys were predicted using machine learning models, depending on the alloys’ compositions, solid-solution treatment and aging conditions. The data used for machine learning were collected from the literature. Among the models, tree-based ensemble models such.....
More
Web of Science 2
Crossref 2
E
f
f
e
c
t
s
o
f
S
t
a
c
k
i
n
g
N
u
m
b
e
r
o
n
M
i
c
r
o
s
t
r
u
c
t
u
r
e
a
n
d
M
e
c
h
a
n
i
c
a
l
P
r
o
p
e
r
t
i
e
s
f
o
r
C
o
l
d
R
o
l
l
B
o
n
d
i
n
g
P
r
o
c
e
s
s
o
f
D
i
s
s
i
m
i
l
a
r
A
l
u
m
i
n
u
m
A
l
l
o
y
S
h
e
e
t
s
S
e
o
n
g
-
H
e
e
L
e
e
Korean J. Met. Mater.
2023;61(9):652-658. Published online 2023 Aug 30
DOI:
https://doi.org/10.3365/KJMM.2023.61.9.652
Abstract
A cold roll-bonding (CRB) process is applied to study the effects of stacking number on the microstructure and mechanical properties of roll-bonded and age-treated Al sheets. Commercial AA1050 and AA6061 sheets with a thickness of 2 mm were stacked alternately on each other to two and four layers, and roll-bonded.....
More
Web of Science 7
Crossref 7
G
e
n
e
r
a
t
i
n
g
t
h
e
M
i
c
r
o
s
t
r
u
c
t
u
r
e
o
f
A
l
-
S
i
C
a
s
t
A
l
l
o
y
s
U
s
i
n
g
M
a
c
h
i
n
e
L
e
a
r
n
i
n
g
기계학습에 의한 Al-Si 주조 합금 미세조직 이미지 생성
I
n
-
K
y
u
H
w
a
n
g
,
H
y
u
n
-
J
i
L
e
e
,
S
a
n
g
-
J
u
n
J
e
o
n
g
,
I
n
-
S
u
n
g
C
h
o
,
H
e
e
-
S
o
o
K
i
m
황인규, 이현지, 정상준, 조인성, 김희수
Korean J. Met. Mater.
2021;59(11):838-847. Published online 2021 Oct 28
DOI:
https://doi.org/10.3365/KJMM.2021.59.11.838
Abstract
In this study, we constructed a deep convolutional generative adversarial network (DCGAN) to generate the microstructural images that imitate the real microstructures of binary Al-Si cast alloys. We prepared four combinations of alloys, Al-6wt%Si, Al-9wt%Si, Al-12wt%Si and Al-15wt%Si for machine learning. DCGAN is composed of a generator and a discriminator......
More
Web of Science 3
Crossref 3
1
|
Journal Impact Factor 1.1