Ti-5Mo-2Fe 합금의 시효처리 조건에 따른 미세조직 변화 및 기계적 특성

김홍민 · 박세영 · 이동근*

순천대학교 신소재공학과

Microstructural Evolution and Mechanical Properties According to Aging Conditions of Ti-5Mo-2Fe Alloy

Hong-Min Kim, Se-Yeong Park, and Dong-Geun Lee*

Department of Materials Science and Metallurgical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea.

Abstract: Beta-type titanium alloys have a low elastic modulus, excellent cold workability, and are widely used as implant materials. High strength is possible by forming a precipitation in the β -matrix via solution treatment and aging treatment. However, beta titanium alloys require a large amount of beta-stabilizing elements (Fe, Nb, Mo, Ta, etc), and these expensive beta stabilizing elements increase the manufacturing cost of these alloys. In this study, Ti-5Mo-2Fe metastable beta-titanium alloy was designed by adding Mo and Fe, which were relatively inexpensive and had excellent biocompatibility among beta-stabilizing elements, and an ingot was manufactured by vacuum arc remelting. Solution treatment was maintained at 850°C for a holding time of 1 hour, followed by furnace cooling. Aging treatments were conducted in a range of temperature 350~500°C and holding time 2 h~48 h. The microstructure behaviors and mechanical properties were analyzed according to these aging treatment conditions. Isothermal ω phases were precipitated by aging treatment, and hardness and yield strength were found to be significantly higher for conditions of 400°C, 8h. As holding time and temperature increased, these phases transformed into secondary alpha phases and the hardness and yield strength decreased due to this microstructural evolution.

(Received 8 February, 2023; Accepted 17 May, 2023)

Keywords: Metastable beta titanium, aging treatment, ω phase, secondary α phase

1.서 론

타이타늄 합금은 높은 비강도, 우수한 내식성 및 생체적 합성 특성을 보이기 때문에 자동차, 우주·항공산업 뿐만 아 니라 생체재료로 널리 사용되고 있다 [1]. 최근 고령화 시대 에 진입하면서 노년층을 중심으로 임플란트 치료에 대한 수 요가 증가함에 따라 임플란트 소재 기술 개발이 요구되고 있다 [2]. 임플란트 소재로 사용되고 있는 Ti-6Al-4V ELI (Extra Low Interstitial) 합금은 뼈의 탄성계수 (10~30 GPa)보 다 높은 탄성계수를 가져 골조직으로 응력이 충분히 전달 되지 않아 골격 퇴화 및 골 소실을 발생시켜 임플란트의

- 김홍민 · 박세영: 석사과정, 이동근: 교수

*Corresponding Author: Dong-Geun Lee

[Tel: +82-61-750-3555, E-mail: leechodg@scnu.ac.kr]

Copyright © The Korean Institute of Metals and Materials

수명을 단축시키는 응력차폐현상을 초래한다 [3-5]. 또한, 독성을 띠는 합금원소인 Al과 V이 용출되어 인체에 악영 향을 끼치는데, 용출된 AI은 알츠하이머병을 유발시키며, V 은 강한 세포독성으로 주위 조직, 세포에 축적되어 세포 손 상을 유발한다는 보고가 있었다 [6,7]. 이에 생체적합성이 우수하고 낮은 탄성계수를 가지는 B 타이타늄 합금의 연구 및 개발이 활발히 일어나고 있다 [8].

타이타늄 합금은 Mo 당량에 따라 α 합금, $\alpha+\beta$ 합금, β 합금으로 구분되는데, β 안정화 원소 (Fe, Nb, Mo, Ta 등)가 다량 함유된 β 타이타늄 합금은 α+β 합금인 Ti-6Al-4V ELI 보다 상대적으로 낮은 탄성계수를 가지며 [9], 용 체화 처리와 시효처리를 통해 β 기지 내에 석출물 (α상, ω 상)을 형성시키고 석출물의 형태, 분율, 분포를 제어하여 기 계적 특성을 효과적으로 향상시킬 수 있는 것으로 보고되 고 있다 [10,11]. 하지만, 낮은 온도인 100°C~500°C에서

시효처리 시 확산을 통해 생성되는 isothermal ω상은 강도 를 급격하게 증가시키는 반면에 인성과 연성을 현저히 감 소시켜 취성을 발생시키기 때문에 적절한 조건으로 시효처 리를 수행해야 한다 [12].

하지만, β 안정화 원소의 높은 원가로 인해 β 합금의 제조 비용이 증가하여 가격경쟁력이 떨어진다. 따라서, 합 금 제조 비용을 감소시키기 위해 고가의 β 안정화 원소 (Nb, Ta, Ni 등)를 대신하여 저가의 합금원소 (Fe, Mo, Mn 등)를 첨가하여 β 타이타늄 합금 개발이 이루어지고 있다 [12,13]. 타이타늄 합금의 Mo는 내식성과 연성을 향 상시키며 탄성계수를 낮추는 효과를 나타내고, Fe는 고용 체 강화가 가장 효과적인 β 안정화 원소 중 하나로 강도 를 효과적으로 향상시킬 수 있다 [14,15].

따라서 본 연구에서는 고가의 β 안정화 원소를 대신하여 비교적 저렴하고 생체적합성이 우수한 원소인 Mo와 Fe를 첨가하여 Ti-5Mo-2Fe 준안정 β 타이타늄 합금을 설계하였 고, β-변태점 이상의 온도에서 용체화 처리를 수행한 뒤 다 양한 온도와 시간 조건에서 시효처리를 수행하였다. 시효 처리 조건에 따른 미세조직 거동과 기계적 특성을 비교분 석하여 임플란트 소재의 적용 가능성을 평가하고자 하였다.

2. 실험방법

본 연구에서 설계한 합금인 Ti-5Mo-2Fe (wt%)는 Ti-Gr.2 (O=0.2 wt%, N=0.03 wt%, C=0.08 wt%, H=0.013 wt%, Fe=0.25 wt%), 순도 99.95% Mo, 99.5% Fe의 원소재를 사용하여 진공아크재용해 (Vacuum Arc Re-melting, VAR)방식을 통해 Φ16 봉상의 잉고트로 제작하였다. Ti-5Mo-2Fe 합금의 Mo 당량은 식(1)에 의해 계산하면 약 10.8%의 Mo 당량을 가지며, 준안정 β 합금 (Mo 당량 10%~25% 범위)으로 분류된다 [16].

$$[Mo]_{eq} = [Mo] + 0.2[Ta] + 0.28[Nb] + 0.44[W] + 0.67[V] + 1.6[Cr] + 1.25[Ni] + 1.7[Mn] + 1.7[Co] + 2.9[Fe]$$
(1)

또한 합금의 평균 이론값은 선행 연구인 Morinaga et al.의 연구 결과 값을 사용하여 다음의 식(2)을 통해 계산 하였다 [17].

$$\overline{Md} = \sum_{i=1}^{n} x_i (Md)_i, \ \overline{Bo} = \sum_{i=1}^{n} x_i (Bo)_i$$
(2)

Bond order (Bo)는 원자들 간 공유결합에 대한 정도를 나타내는 것으로 합금의 물리적 특징과 관련이 깊다. 특히

Fig. 1. Bo - Md phase stability map showing the position of Ti-5Mo-2Fe alloy. [12]

높은 수치를 나타내는 Bo의 원소는 대부분 구조용 합금의 주 합금원소로 알려져 있으며 [13,17], Metal d-orbital energy level (Md)은 첫 번째로 전이 원소 합금에 대한 d-오비탈 에너지이며 특히 이는 전기음성도의 척도와 원자 반경과도 관련이 깊은데 원자반경이 클수록 전기음성도는 높게 나오는 경향을 보인다고 알려져 있다 [18]. 위의 식 을 이용하여 Md는 2.408, Bo는 2.796의 값이 도출되었으 며, Bo-Md phase stability map인 그림 1에 나타내었다 [12]. Ti-5Mo-2Fe 합금은 β상 영역에 포함되며, 변형 메커 니즘은 응력 유기 마르텐사이트 (Stress-Induced Martensite) 변태인 것을 확인할 수 있다.

타이타늄 합금은 조밀 육방정 (Hexagonal Close-Packed, HCP)인 α상과 체심 입방정 (Body Centered Cubic, BCC)인 β상을 포함하는 두 개의 동소체로 구성되며, 미세 조직을 제어하여 기계적 특성을 향상시키기 위해서 β 변태 온도는 중요한 요소이다 [19]. 따라서, Ti-5Mo-2Fe (wt%) 합금의 β 변태 온도를 확인하기 위해서 온도 경험식을 이 용하여 계산하였고, 계산된 온도를 바탕으로 실험적으로 열 처리 온도에 따른 미세조직을 비교하였다.

이후 잉코트의 용체화 처리를 위해 850°C에서 1시간 동 안 열처리를 수행한 후 로냉을 실시하였다. 그 후 350°C~500°C의 온도 범위에서 50°C의 간격의 온도 조건 에서 각각 2h, 4h, 8h, 16h, 48h 동안 유지한 다음 수 냉을 실시한 최종시편을 제작하였다. 위와 같은 시효 온도 및 시효 시간에 따라 열처리된 시편은 20종류이며, 균질화 처리를 한 시편 1종류를 포함하여 총 21종류의 시편을 제 작하였다. 자세한 열처리 공정은 그림 2에 도시하였다.

시편들의 미세조직을 관찰하기 위해 시편을 hot mounting

Fig. 2. Schematic heat treatment process of Ti-5Mo-2Fe alloy.

하였고, #220~#2000의 sand paper와 6 μm, 3 μm, 1 μm, 0.04 μm 연마제를 이용하여 미세 연마하였다. 그 후 Kroll's 용액 (100 ml H₂O, 5 ml HF, 2 ml HNO₃)으로 수 초간 에칭한 뒤 광학현미경 (Optical Microscope, BX52M, Olympus) 및 주사전자현미경 (Scanning Electron Microscope, JSM-7001F, JEOL)을 이용하여 시효 시간 및 온도변화에 따른 미세조직 거동과 연계하여 비교·분석 하였다. X-선 회절분석기 (X-ray Diffraction, XRD-7000, Brucker D8)를 통해 각 공정 조건별 석출상의 변화를 분 석하고자 하였으며, XRD의 시험조건은 20 = 30°~90°, step size는 0.02°으로 측정하였다.

기계적 특성을 평가하기 위해 비커스 경도 시험기 (Vickers Hardness, HM-200, Mitutoyo)를 이용하여 경도 를 측정하였으며, 15초의 유지 시간 동안 1 kgf의 하중을 가하여 14point의 경도값을 측정하여 평균값을 계산하였다. 또한 동적 만능 재료시험기 (Dynamic Universal Materials Testing Machine, BESTUTM-10MD, Ssaul Bestech)을 통해 1×10⁻³/sec의 변형속도로 상온 압축시험을 3회 수행 하여 압축 항복강도와 연신율 평균값을 계산하였고, 미세 조직 변화에 따른 기계적 특성을 비교분석하였다.

3. 결과 및 고찰

3.1 β 변태 온도와 초기 미세조직

Ti-5Mo-2Fe 합금의 β 변태 온도를 알아보기 위해 β 변 태 온도 경험식에 의해 계산된 온도를 바탕으로 열처리 온 도에 따른 미세조직을 관찰하여 비교하였다. 일반적으로 Ti-6Al-4V 합금의 경우 β 변태 온도는 998℃로 알려져 있으며, Ti-5Mo-2Fe 합금은 β 안정화 원소인 Mo와 Fe가 다량 함유되어 β 변태 온도는 감소할 것으로 예측된다. 이 에 합금원소 당량에 따른 β 변태 온도 경험식인 식(3)에 의해 β 변태 온도를 계산하였다 [20].

Fig. 3. Optical microstructures of Ti-5Mo-2Fe alloy after various solution treatments: (a) 780°C/8 hr/WQ, (b) 800°C/8 hr/WQ, (c) 820°C/8 hr/WQ, and (d) 840°C/8 hr/WQ.

$$T_{\beta} = 872 + 23.4[Al] + 32.1[Si] - 7.7[Mo] - 12.4[V]$$

-14.3[Cr]-8.4[Fe]-4.3[Zr] (3)

Ti-5Mo-2Fe 합금의 β 변태 온도를 계산한 결과 약 816°C로 계산되었으며, 오차범위는 ±10°C이다. 그 후 780°C~840°C의 온도 범위에서 20°C 간격으로 8시간 열처 리를 수행한 후 상변화를 광학현미경으로 관찰한 결과를 그림 3에 나타내었다. 780°C 조건과 800°C 조건의 경우에 는 β 기지 내 다량의 α상이 관찰되었으며, 온도가 820°C 까지 증가함에 따라 α상의 양은 감소하였다. 820°C 조건 의 경우 오차범위에 포함되기 때문에 미량의 α상이 존재 하였고, 840°C 조건의 경우 단일 β상으로 존재하는 것을 관찰할 수 있었다. 따라서, 경험식에 의해 계산된 온도와 실험적으로 열처리를 통해 측정한 온도를 비교한 결과 Ti-5Mo-2Fe 합금의 β 변태 온도는 오차범위를 고려했을 때 820°C~840°C 사이에 형성되는 것을 알 수 있다.

시효처리 전 β 변태 온도 이상인 850°C에서 1 h 동안 용체화 처리 후 로냉을 수행하였으며, 이를 광학현미경으 로 미세조직 관찰과 XRD 측정한 결과를 그림 4에 나타 내었다. 용체화 처리 후 급냉 시 무확산 변태로 athermal ω상이 석출되지만, 본 실험에서는 로냉으로 인한 느린 냉 각속도 때문에 핵생성이 유리한 β상 입계에서 α상이 우 선적으로 석출되고, 이후 β상 내부로 α상 석출 및 성장 이 일어나서 α+β lamellar 구조를 갖는 basket weave 조직이 관찰되었다 [21]. XRD 분석 결과 α상 peak 와 β상 peak가 관찰되었고 추가적인 석출상 peak는 관찰되 지 않았다.

Fig. 5. Vickers hardness variation of Ti-5Mo-2Fe alloy according to aging holding time and temperature.

Fig. 4. Optical microstructure and XRD diffraction profile of Ti-5Mo-2Fe alloy after solution treatment at 850°C for 1hr and furnace cooling.

3.2 경도 특성

시효처리 시 석출되는 상에 따른 기계적 특성 변화를 관 찰하기 위해 용체화 처리 후 350°C, 400°C, 450°C, 500°C에서 각각 2h, 4h, 8h, 16h, 48h 시효처리 한 20가지 조건들의 경도변화를 그림 5에 나타내었다. 용체화 처리만 수행한 시편의 경도는 277.4Hv로 측정되었다. 모든 시효 온도 조건에서 시간이 8h까지 증가함에 따라 350°C 조건은 373.1Hv, 400°C 조건은 390.8Hv, 450°C 조건은 385.3Hv, 500°C 조건은 383.6Hv로 최대 경도에 도달하는 것을 확인할 수 있었고, 400°C/8h 조건에서 가장 높은 경 도가 측정되었다.

이러한 경도 증가는 시효처리 시 확산을 통해 생성되는 isothermal ω상이 β 기지 내 석출되었으며, 시간이 8 h까 지 증가할수록 석출되는 양이 많아진 것으로 사료된다. 석 출된 ω상은 시효 시간이 길어짐에 따라 결정립 성장이 발 생하기도 하고 secondary α상의 핵생성 사이트로 작용하기 때문에 8 h 이후 온도 조건에서 isothermal ω상이 상대적 으로 연한 secondary α상으로 상변태 및 결정립 성장으로 이루어져 연화 현상이 발생하였다 [22,23]. 따라서, 350℃ 조건은 360.1Hv, 400℃ 조건은 378.6Hv, 450℃ 조건은 377.8Hv, 500℃ 조건은 366.6Hv까지 감소했으며, α상의 분 율이 증가할 것으로 예측된다. 한편, 낮은 시효 온도인 350℃ 조건의 경우 느린 확산 속도로 인한 낮은 석출 구 동력 때문에 시간이 증가함에 따라 비교적 낮은 경도변화 를 나타낸다 [24].

3.3 상온 압축 특성

시효 시간과 온도 증가에 따른 isothermal ω상 석출에 대한 압축 특성을 면밀히 파악하기 위해 경도변화 경향성 이 크게 나타난 온도인 400°C에서 2 h, 8 h, 16 h, 48 h 동안 시효처리 한 시편들과 350°C, 400°C, 450°C, 500°C 의 온도 조건에서 가장 높은 경도값이 나타난 8 h 시효 처리한 시편들에 대해 상온 압축시험을 수행하여 strainstress curve와 자세한 측정값을 그림 6과 표 1에 나타내 었다. 850°C에서 1 h 용체화 처리를 수행한 경우 900MPa 의 압축 항복강도와 31.9%의 연신율을 가지며, 이후 400°C에서 다양한 시간 시효처리를 수행한 경우 압축 항 복강도는 1200MPa 정도로 33% 이상 향상되었으며, 8 h에 서 가장 높은 압축 항복강도 1247MPa와 20.2%의 다소 감소한 연신율이 나타났다 (그림 6(a)). 시효 시간 증가에 따른 항복강도 증가는 앞서 언급했던 바와 같이 β 기지 내 isothermal ω상이 석출되었기 때문이다. ω상은 강도를

Fig. 6. Compressive stress-strain curves of Ti-5Mo-2Fe alloy according to (a) aging holding time and (b) aging temperature.

Table. 1. Compressive yield strength and elongation of the aged Ti-5Mo-2Fe alloys.

Specimens	Compressive yield strength (MPa)	Strain (%)
Solution treatment (ST)	900	31.9
ST + aging 350°C 8h	1161	25.9
ST + aging 400°C 2h	1153	28.6
ST + aging 400°C 8h	1247	20.2
ST + aging 400°C 16h	1214	20.6
ST + aging 400°C 48h	1205	23.1
ST + aging 450°C 8h	1227	24.0
ST + aging 500°C 8h	1224	24.5

증가시키는 반면에 인성과 연성을 감소시켜 취성을 발생시 키기 때문에 시효 시간이 8 h까지 증가할수록 isothermal ω상의 분율이 증가하여 연신율이 20.2%로 점차 감소하였다. 이후 시효 시간이 48 h까지 증가함에 따라 항복강도는 1205MPa까지 감소하였고, 연신율은 23.1%로 증가하였다. 이러한 연신율의 증가 원인으로는 시효 시간이 길어짐에 따라 ω상이 α상의 핵생성 사이트로 작용하여 경한 ω상 보다 비교적 연한 secondary α상으로 상변태 및 성장이 일어난 것으로, 이전에 보고된 문헌과 일치하는 것을 알 수 있다 [25]. 그림 6(b)에서도 마찬가지로 시효 온도가 400°C까지 증가함에 따라 isothermal ω상이 석출되어 압축 항복강도가 증가하고 연신율이 감소하였으며, 450°C 조건 에서 secondary α상으로 상변태가 일어나 항복강도가 감소 하고 연신율이 증가하였다.

3.4 시효 조건에 따른 미세조직 변화

시효 시간과 온도변화에 따라 석출되는 상을 조사한 XRD 측정 결과를 그림 7에 나타내었다, 모든 시효처리 조건에서 α상, β상 peak가 관찰되었으며, 400°C 조건에서

Fig. 7. XRD diffraction profiles of Ti-5Mo-2Fe alloy according to (a) aging holding time and (b) aging temperature.

Fig. 8. Optical microstructures and SEM micrographs of specimens aged at 400 °C for (a), (d) 8 hr, (b), (e) 16 hr, and (c), (f) for 48 hr.

8h와 16h 시효 처리한 경우에만 ω상 peak가 관찰되었다. 그림 7(a)에서 볼 수 있듯이 2h와 48h 조건에서는 ω상 peak가 관찰되지 않았는데, 2h 조건의 경우 짧은 시효 시 간으로 인해 ω상 분율이 적고, 48h 조건의 경우에는 긴 시효 시간으로 인해 대부분의 ω상이 미세한 secondary α 상으로 상변태 한 것으로 분석되었다. 그림 7(b)에서도 마 찬가지로 350°C 조건의 경우에는 낮은 시효 온도로 인해 느린 확산 속도로 석출 구동력이 낮아 ω상 분율이 적고, 500°C 조건의 경우에는 높은 시효 온도로 ω상이 미세한 secondary α상으로 상변태한 것으로 판단된다. 이를 통해 시효 온도와 시간이 석출상 거동에 큰 영향을 미치는 것을 확인할 수 있었다.

미세조직 변화를 광학현미경과 주사전자현미경으로 관찰 한 결과를 그림 8과 그림 9에 나타내었다. 그림 8에서 시 효 시간이 길어짐에 따라 β상 기지 내 석출된 isothermal ω상이 α상의 핵생성 사이트로 작용하기 때문에 16 h 조건 에서 β상 기지 내 미세한 secondary α상이 관찰되었다. 48 h 조건에서는 대부분의 ω상이 상변태되어 다량의 secondary α상이 관찰되었고, α상 분율이 증가할 것으로 예측된다. 이에 α상 분율을 정량적으로 평가하기 위해 EBSD 분석을 수행한 결과를 그림 10에 나타내었다. 시효

Fig. 9. Optical microstructures of (a), (d) aged at 400°C for 8 hr, (b), (e) aged at 450°C for 8 hr, and (c), (f) aged at 500°C for 8 hr.

시간이 8h 조건에서는 α상의 분율이 71%이며, 16h 조건 에서는 77%이며, 시효 시간이 48 h까지 증가함에 따라 Isothermal ω상에서 secondary α상으로 변태 및 성장하여 α상 분율은 80.6%까지 증가하였다.

그림 9에서도 마찬가지로 시효 온도가 증가할수록 isothermal ω상이 상변태가 일어나 다량의 secondary α상 이 관찰되었다. 그러나 그림 8에서와 같이 동일한 400°C 에서 시효 시간이 증가함에 따른 α상 성장보다 그림 9에 서 알 수 있듯이 동일한 시효 시간 8 h에서 시효 온도를 증가하는 것이 더 크게 α상이 성장하였고, 미세조직 관찰 을 통해 secondary α상의 성장은 시효 시간 증가보다 온 도 증가에 따른 영향이 더 큰 것을 확인할 수 있었다. 또 한, 모든 온도 조건에서 Widmanstätten Grain Boundary (WGB) α상이 관찰되었다. WGB α상은 균열의 전파방향 을 바꾸어 균열 전파속도를 지연시키기 때문에 그림 6에 서 알 수 있듯이 ω상이 석출되었음에도 큰 연신율 감소가 나타나지 않은 것이라 할 수 있다 [26].

4. 결 론

본 연구에서는 Ti-5Mo-2Fe 합금을 용체화 처리 수행 및

김홍민·박세영·이동근

Fig. 10. Inverse pole figures and phase maps of specimens aged at 400 °C for (a) 8 hr, (b) 16 hr, and (c) 48 hr.

350°C~500°C의 온도 범위에서 시효처리 공정을 수행하여 다음과 같은 결과를 얻을 수 있었다.

(1) 경제적이고 생체재료로 적합한 Ti-5Mo-2Fe 준안정 베타 합금을 설계하였으며, 다양한 시효처리 조건에 대해 미세조직학적 변화와 기계적 특성을 연계 분석하였다. 일 정한 시효 온도에서 시효 시간이 증가함에 따라 연신율이 감소하는 경향은 β 기지 내에 석출되는 미세한 isothermal ω상이 취성을 야기하기 때문이다.

(2) Ti-5Mo-2Fe 준안정 β 합금은 시효 온도와 시간을 적절히 조절함으로써 우수한 기계적 특성을 얻을 수 있음
을 알 수 있었다. 용체화처리 후 시효온도 400°C~500°C
범위 내에서 8h~16h 동안 시효처리 하는 것이 높은 강도
와 적절한 연신율 특성을 얻을 수 있는 공정 조건임을 확 인하였다. (3) 400°C/8h의 시효 조건에서 석출상의 거동이 가장 두 드러지게 나타나 가장 높은 경도값을 나타냈으며, 시효처 리의 시간 및 온도가 증가함에 따라 확산을 통해 석출된 isothermal ω상이 secondary α상으로 변태 및 성장하여 연화 현상으로 인하여 경도 값이 감소하였다.

감사의 글

본 연구는 순천대학교 교연비 사업의 연구지원으로 수행 되었으며, 이에 감사드립니다.

REFERENCES

- S. E. Kim, H. W. Jeong, Y. T. Hyun, D. K. Lee, Y. T. Lee, J. K. Park, and J. H. Lee, *J. Kor. Inst. Met. & Mater.* 44.6, 462 (2006).
- S. E. Haghighi, H. Attar, I. V. Okulov, M. S. Dargusch, and D. Kent, *J. Alloys Compd.* 853, 156768 (2021).
- R. Karre, M. k. Niranjan, and S. R. Dey, *Mater. Sci. Eng.*, C 50, 52 (2015).
- 4. C. B. Han, and D. G. Lee, J. Kor. Soc. Heat Treat. 35, 88 (2022).
- K. D. Woo, S. H. Park, J. Y. Kim, S. M. Kim, and M. H. Lee, *Met. Mater. Int.* 22, 150 (2012).
- Y. U. Kim, Y. H. jeong, J. Y. Cho, H. C. Choe, and M. S. Vang, *J. Kor. Inst. Surf. Eng.* 42, 161 (2009).
- H. S. Kim, I. D. Yeo, W. Y. Kim, D. H. Cho, S. H. Lim, M. S. Moon, and W. J. Kang, *J. Kor. Inst. Met. & Mater.* 44, 424 (2006).
- 8. S. Liang, Adv. Eng. Mater. 22, 2000555 (2020).
- S. E. Kim, H. W. Jeong, Y. T. Hyun, Y. T. Lee, C. H. Jung, S. K. Kim, J. S. Song, and J. H. Lee, *Met. Mater. Int.* 13, 145 (2007).
- 10. C. S. Youn, Y. K Park, J. H Kim, S. C Lee, and D. G. Lee, *J. Kor. Soc. Heat Treat.* **30**, 279 (2017).

- B. H. Choe, S. K. Shin, S. J. Kim, Y. T. Lee, S. B. Kang, and M. Hagiwara, *Met. Mater. Int.* **11**, 429 (2005).
- J. J. An, D. G. Lee, K. R. Lim, T. Y. Kim, Y. T. Lee, and S. Y. Yoon, *Korean J. Met. Mater.* 53, 380 (2015).
- M. Gepreel, and M. Niinomi, J. Mech. Behav. Biomed. Mater. 20, 407 (2013).
- C. C. Bortolan, L. C. Campanelli, P. Mengucci, G. Barucca, N. Giguère, N. Brodusch, C. Paternoster, C. Bolfarini, R. Gauvin, and D. Mantovani, *J. Alloys Compd.* **925**, 166757 (2022).
- Y. A, M. A. H. Gepreel, S. Kobayashi, S. Okano, and T. Okamoto, *Mater. Sci. Eng., C* 99, 552 (2019).
- H. J. Kwon, K. R. Lim, Y. T. Lee, D. G. Lee, J. H. Lee, and S. E. Kim, *Korean J. Met. Mater.* 54, 925 (2016).
- C. Li, D. G. Lee, X. Mi, W. Ye, S. Hui and Y. T. Lee, J. Alloys Compd. 549, 152 (2013).
- 18. R. S. Mulliken, J. Chem. Phys. 23, 2338 (1955).
- S. Tamirisakandala, R. B. Bhat, D. B. Miracle, S. Boddapati, R. Bordia, R. Vanover, and V. K. Vasudevan, *Scripta Mater.* 53, 217 (2005).
- C. F. Yolton, F. H. Froes, and R. F. Malone, *Metall. Trans. A* 10, 132 (1979).
- 21. D. H. Kim, J. W. Won, D. W. Jeong, H. S. Lee, S. Y. Yoon, and Y. T. Hyun, *Korean J. Met. Mater.* **55**, 600 (2017).
- A. Cremasco, P. N. Andrade, R. J. Contieri, E. S. N. Lopes, C. R. M. Afonso, and R. Caram, *Mater. Des.* 32, 2387 (2011).
- 23. S. Nag, R. Banerjee, and H. L. Fraser , *Mater. Sci. Eng.*, *C* **25**, 357 (2005).
- 24. H. Zhang, C. Wang, G. Zhou, S. Zhang, and L. Chen, J. *Mater. Res. Technol.* **18**, 5257 (2022).
- 25. T. Xu, S. Zhang, S. Liang, N. Cui, L. Cao, and Y. Wan, *Sci. Rep.* **9**, 1 (2019).
- H. Zhang, C. Wang, S. Zhang, G. Zhou, and L. Chen, *Materials* 11, 2283 (2018).