| Home | E-Submission/Review | Sitemap | Editorial Office |  
Korean Journal of Metals and Materials > Epub ahead of print
김한솔1 · 구혜원1 · 송민주1 · 정중희1 · 오용준1 · 송창은2 · 홍기하1,*
A-site 조성 제어를 통한 FA기반 페로브스카이트의 상안정화 및 전단 코팅 최적화 연구
Received: 14 January 2021;  Accepted: 4 March 2021.  Published online: 6 April 2021.
Halide perovskite solar cells have been attracting tremendous attention as next-generation solar cell materials because of their excellent optical and electrical properties. Formamidinium lead tri-iodide (FAPbI3) exhibits the narrowest band gap among lead iodide perovskites and shows excellent thermal and chemical stability, also. However, the large-area coating of FAPbI3 needed for commercialization has not been successful because of the instability of the black phase of FAPbI3 at ambient temperature. This study presents a compositional engineering direction to control the polymorph of the FAPbI3 thin film for the shear coating processes, without halide mixing. By adopting a hot substrate above 100 oC, our shear coating process can produce the black phase FA-based halide perovskites without halide mixing. We carefully investigate the Cs- FA and MA-FA mixed lead iodide perovskites’ phase stability by combining the study with thin-film fabrication and ab initio calculations. Cs-FA mixing shows promising behaviors for stabilizing α-FAPbI3 (black phase) compared with MA-FA. Stable FA-rich perovskite films cannot be achieved via shear coating processes with MA-FA mixing. Ab initio calculations revealed that Cs-FA mixing is excellent for inhibiting phase decomposition and water incorporation. This study is the first report that FA-based halide perovskite thin films can be made with the shear coating process without MA-Br mixing. We reveal the origin of the stable film formation with Cs-FA mixing, and present future research directions for fabricating FA-based perovskite thin films using shear coating.
Keywords: perovskite, shear-coating, solar-cell, large-area, FAPbI3
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
Related article
Editorial Office
The Korean Institute of Metals and Materials
6th Fl., Seocho-daero 56-gil 38, Seocho-gu, Seoul 06633, Korea
TEL: +82-2-557-1071   FAX: +82-2-557-1080   E-mail: metal@kim.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Institute of Metals and Materials. All rights reserved.                 Developed in M2PI