| Home | E-Submission/Review | Sitemap | Editorial Office |  
Korean Journal of Metals and Materials > Epub ahead of print
잉크젯 인쇄 기술을 이용하여 상대적으로 낮은 온도에서 리튬이 도핑 된 인듐-아연-산화물 트랜지스터의 제작
Received: 11 January 2021;  Accepted: 24 February 2021.  Published online: 6 April 2021.
Inkjet printing is a very attractive technology for printed electronics and a potential alternative to current high cost and multi-chemical lithography processes, for display and other applications in the electronics field. Inkjet technology can be employed to fabricate organic light emitting diodes (OLED), quantum dots displays, and thin-film transistors (TFTs). Among potential applications, metal oxide TFTs, which have good properties and moderate processing methods, could be prepared using inkjet printing in the display industry. One effective method of improving their electrical properties is via doping. Lithium doping an oxide TFT is a very delicate process, and difficult to get good results. In this study, lithium was added to indium-zinc oxide (IZO) for inkjet printing to make oxide TFTs. Electrical properties, transfer and output curves, were achieved using inkjet printing even at the relatively low annealing temperature of 200 oC. After optimizing the inkjet process parameters, a 0.01 M Li-doped IZO TFT at 400 oC showed a mobility of 9.08±0.7 cm2/V s, a sub-threshold slope of 0.62 V/dec, a threshold voltage of 2.66 V, and an on-to-off current ratio of 2.83 × 108. Improved bias stability and hysteresis behavior of the inkjet-printed IZO TFT were also achieved by lithium doping.
Keywords: inkjet printing, oxide TFT, doping effect, low temperature
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
Related article
Editorial Office
The Korean Institute of Metals and Materials
6th Fl., Seocho-daero 56-gil 38, Seocho-gu, Seoul 06633, Korea
TEL: +82-2-557-1071   FAX: +82-2-557-1080   E-mail: metal@kim.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Institute of Metals and Materials. All rights reserved.                 Developed in M2PI