Direct Laser Deposition of 14Cr Oxide Dispersion Strengthened Steel Powders Using Y2O3 and HfO2 Dispersoids
Barton Mensah Arkhurst, Jin-Ju Park, Chang-Hoon Lee, Jeoung Han Kim
Korean J. Met. Mater.. 2017;55(8):550-558. Published online 2017 Aug 1 DOI: https://doi.org/10.3365/KJMM.2017.55.8.550
|
Citations to this article as recorded by
Manufacturing oxide-dispersion-strengthened steels using the advanced directed energy deposition process of high-speed laser cladding
Markus B. Wilms, Norbert Pirch, Bilal Gökce
Progress in Additive Manufacturing.2023; 8(2): 159. CrossRef Influence of Pre-Annealing on Densification, Microstructure, and Microhardness of Spark Plasma Sintered TiO2-MnO2 Composites
Lesego M. Mohlala, Peter Apata Olubambi, Nonhlanhla Precious Cele, Tien Chien Jen
Key Engineering Materials.2022; 917: 137. CrossRef Research progress on preparation technology of oxide dispersion strengthened steel for nuclear energy
Jianqiang Wang, Sheng Liu, Bin Xu, Jianyang Zhang, Mingyue Sun, Dianzhong Li
International Journal of Extreme Manufacturing.2021; 3(3): 032001. CrossRef Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition
René Streubel, Markus B. Wilms, Carlos Doñate-Buendía, Andreas Weisheit, Stephan Barcikowski, Johannes Henrich Schleifenbaum, Bilal Gökce
Japanese Journal of Applied Physics.2018; 57(4): 040310. CrossRef
|